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SUMMARY

Formulas are obtained for the radiating energy and the radiation field
of charges moving in a gyrotropic medium. These formulas are applied to the
case of oscillator rotation and also to the case of radiation of an electron
moving in a given medium with constant velocity (Cerenkov effect).

*
* *

I. INTRODUCTION

Ginzburg considered in its time [1l] the question of the field and of
emitted energy by charges moving in an anisotropic medium (see also [2]).
However, the possibility of optical activity (gyrotropy) was not taken into
account in Guinzburg's works (*). Meanwhile, the emission of electrons,
moving in gyrotropic media, has gertain specific singularities, thus repre-
senting a known interest.

We shall resolve the stated problem by the method constituting a further
generalization of the Hamilton method (see [3]), which was applied by Ginz-
burg in the works previously indicated [1].

2. EQUATIONS FOR POTENTIALS IN A GYROTROPIC
MEDIUM

We shall start from field equations in a medium where there is a charge.
e moving with velocity ¥V, and also from relations between D and

ool

(*) A medium is called gyrotropic, whenever electromagnetic waves, pro-
pagating in it with -a specific velocity (normal waves), have, generally
speaking, an elliptical polarization.
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7 (2.1)
div D =4 xed (r —r,); (2.2)
rotE =L, (2.3)
div Il =0; (2.4)

D = (s,p) E. (2.5)

In the case of gyrotropic medium considered here, the dielectric constant
(eap) (@, B=0x, ¥, 2) represents a complex tensor of second rank [4]. In the
absence of absorption this tensor is Hermitian [4]:

8up = 8pq. (2.6)

Let us introduce, as usual, instead of field intensities the potentials

.—=—-—c—ﬁ———gradq>, H =rot A. 2.7)

Note that because of gyrotropy property and (2.6) it is practical to con-
sider during intermediate operations the field vectors ag complex quantities.
For example, the real value of an electric field is E + E, where E is a quan-
tity standing in (2.7) etc.

By substituting (2.7), (2.3), (2.5) into Eqs.(2.1), (2.2), we shall obtain

for the potentials, the following equatioms:

1 « %A
VzA—';i‘z‘leﬂﬂ '61’@ €. — grad divA —

m }_;°°‘°b"e“+k C. = — 4nevd (r — r,j, (2.8)
« B

1 a9 : .
z‘aa( OF dx +ax ‘,x) + k. C. = —4ned (r —r,), (2.9)

. . > . . ->
where § is a delta-function; T is the radius-vector of the electron, e, are
unitary vectors of coordinate axes, k. c. means a complex~-conjugate expression,

For the solution of these equations we shall make use of an additional
condition, constituting a generalization of the well known condition div K= 0.

oA
Za_e.a on Fkoc.=0. (2.10)

As a result of this conditior_l's applicationto (2.9), the equation for the
scalar potential is separated and, upon simplification with the aid of (2.6)
it assumes the form:

ool
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g} : +2 23 Re eap - f,j = — 2ned (r —r.), (2.11)
«>p

where Re means the real part of z.

3. RADIATION ENERGY

When computing the field energy of a moving electron, we start from the
. expression

1 . 1 *
=4z ED"dx + - {HH' d=. (3.1)

In the presence of dispersion, i.c., when 8 ==¢€sp(»), we must make use
of the general expression

—~?:—t—SSE --drdt+ SHH'd‘t. (3.2)

If we introduce expressions (2.5), (2.7) into (3.1) or (3.2), and if we
utilize conditions (2.10), we shall obtain that the energy of the field is
divided in two parts:

~ the energy linked with the longitudinal part of D,

5= 3 eun 3222 i, (3.3)
Te B
and

- the energy i linked with the transverse part of D and corresponding
to the radiation. The expression for i may be writtem in the form:

St =1 \E“DVds + (b a, (3.4
< <
or, in the presence of dispersion
(r* ’ :
Ko = __SS "0 dedt 4\ Hiras, (3.5)
X
where
‘ 1 aA w_ 1y 04y
EI':____c____t__' Da___-————c-‘aaua o1 . (306)

Hence it may be seen that the above chosen basic condition (2.10) has
a simple physical sense: it expresses the fact that the radiation field is

transverse div D“ =0. (3.7)

In order to compute the energy emitted by the electron, we shalllapply
the Hamilton method, used by Guinzburg [1] in the problem of anisotropic'medium.



Let us expand the vectorial potential in Fourier series within the limits of
a cube with edge L = 1, considering the field at cube boundaries as periodic

and let us substitute Eq,(2.8) by a system of equations for the coefficients
of this series.

We shall write the series in question in the form:

- e Ikyr
A=Vixc T a,qpe ™, (3.8)
where A

an=am t+ fana (3.9)

9,(6) , say the "field coordinates" are the functions of time sought for. Rela-
tion (3.9) expresses the case when the polarization of the emitted waves in
the considered gyrotropic medium is elliptical. Vectors &m and ane define
the plane of the ellipse which describes the end of the electric vector. The
directions and the relative values of these vectors are determined from Eqs.
(II1), (IV) of the Appendix. The index i = 1, 2 corresponds to different
types of polarization (the so called ordinary and extraordinary waves; see
Appendix).

Let us substitute expression (3.8) for A into (2.8) and multiply the so
obtained equation by 1”?;?(am4——ia“ﬂ)d_m“r and let us integrate it over the
volume in which the expansion is performed. Having utilized conditions (2.6),
(2.10) and the periodicity conditionm we obtain a differential equation with
respect to ¢, (f)

= —— , —ik
le.l qm + Qlu.'l qlu. = V4ﬂ ev (alul - la!u.2) 6 u."e, (3 . 10)
where
Qi = 2 8ap Aipp Qv (3.11)
L]
Quuz = ¢* [k2 i @t — (Ku 1) (Ku aiy)]- (3.12)

Eq.(3.10) is substantially simplified and coincides in form with the
equation corresponding to the case of vacuum [3], provided we subordinate
the coefficients Q and Q) to conditions:

Qi =1, (3.13)

Qlu.2 = “’lav. = kzcz /n?u.- (3 14)

These conditions, constituting according to (3.11) and (3.12) the norma-
lization conditions of g., are evidently not independent; indeed, substituting
into (3.11)-(3.14) the expressions for n? , E (see Appendix) and performing
a series of simplifications, we become convinced that the fulfillment of one

of the indicat d conditions converts the other one into an identity.

Let us now transform the expression (3.4) for the radiation energy. To
that effect we shall substitute in it (3.6), (3.8), utilize the normalization
condition, transforming the first addend with the help of (3.11), (3.13),



the second addend with the aid of (3.12), (3.14), and we shall gpply the con-
dition of periodicity. As a result we obtain

K= Z (‘}m ‘}:u + ‘”?..qmq:u)- (3.15)

Ln

Inasmuch as the radiation field's energy is separated from the energy
of the carried field, the obtained expression remains valid also in the case
of the presence of dispersion, when one must start from formula (3.5) (for
more details on this, see [1]).

4. RADIATION OF AN ELECTRON MOVING UNIFORMLY
IN A GYROTROPIC MEDIUM

We shall consider as a first application of the above expounded theory
the radiation of an electron, uniformly moving in a gyrotropic medium with
a velocity higher than the phase velocity of light in that medium (Cerenkov
effect). The radius-vector of the electron varies in this case according to
the law:

re==Vt. (4.1)

The functions ¢, (f)entering into (3.15) are determined as the solutionm
of Eqs.(3.10) at conditions (3 13), (3.14) and (4.1). These solutions,
satisfying the initial conditions qu = 9y =_O at t = 0, are the following:

Vix — e -
= me [(va;,) — (va,,)] [e—“’c' — _12_. (1 + %ﬁ-‘) e~tonf -

"’lzu—"’:v
1 (l)‘. la)i {3
_-5(1—;)—’;);3 u]. (4.2)
where -
e = (k). (4.3)

As may be seen from Eq.(3.10), and also directly from (4.2), the solu-
tions, accruing with time and corresponding to the radiation, will take place
only at resonance condition, i. e. at o) =w, Therefore, taking into account
(3.14), we obtain the well known condition for Cerenkov radiation:

cos ¥y = 1/n1,B, (4.4)

where 9,, is the angle between V and ¥,, B = v/c. This condition follows also
from simple interferential considerations and, for that reason, it cannot
depend on the properties of the medium. The essential peculiarity of a gyro-
tropic (and generally anisotropic) medium is the dependence of the refractive
index n; on the propagation direction n;, = nj, (¥, ¢), where ¢ is the azi-
muthal angle in the spherical system of coordinates, in which the direction

of ¥V is taken for the polar axis.

b 4
The wave normals of monochromatic waves of Cerenkov radiation form, ge-
nerally speaking, two families of conical surfaces, corresponding to ordinary
and extraordinary waves.



Let us substitute the solution (4.2) into (3.15) and leave in the obtain-
ed sum only the terms corresponding to radiation. Further we shall pass from
the sum to the integral by means of the well known Hamiltonian method [1, 3],
utilizing the expression for the number of waves with frequencies in the range
w, W + dw and wave vectors lying in the solid angle equal to unity [3].

Performing integration over the angle ¥ and taking into account that in
the general case the quantity njy depends on ¥, ¢, we obtain (%)

(Fen

e Szgn [(va,;)* + (vay,)}] n? e do do (5.5)

"’2nc’vmv;o 1—(/n Vn';’ﬁ’ — 1) (dn;/d %) ’

whereupon condition (4,4) must be observed. Let us recall that i = 1, 2 is
related respectively to ordinary and extraordinary waves. Integration over
is performed in the interval, where the condition v > c¢/nj(w) is fulfilled.

Formula (4.5) differs in its form from the corresponding formula for an
inactive anisotropic medium (see [1, 2]) by the presence of not one but two
terms of the type (va)z. This is linked with the elliptical polarization of
norma; waves, which is characterized by two vectors, 3,, and 3,. The expres-
sions &, n, cos (é%) and others, entering into (4.5) have in the given case
another, much more complex form than for the inactive medium (see Appendix).

In case of isotropic medium formula (4.5) is substantially simplified
not only on account of polarization nonlinearity as this takes also place in
the preceding case, but also on the strength of the fact that now n does not
depend on the direction,+£hat is, dn/a®¥ = 0. As follows from (3.11)-(3.14),
in an isotropic medium (va)? = (v?/e) sin?¥, whence, taking into account (4.4)
and the independence of parameters of ¢, we obtain from (4.5) the well known
Frank and Tamm formula [5] for Cerenkov losses

.92'1;-——‘—%?—[- S (l—-;%—,—)wdm. 4.5")
B>

Calculation of Radiation for the Simplest Case

We shall limit ourselves to application of formula (4.5) to the simplest
case of a medium characterized by the unique '"gyrotropy parameter"‘eg.

/8 —ieg O
Eop = kieg e 0 | (4.6)
0 0 s
characterizing a certain gyrotropic crystal. As may be seen, at €, = 0, we

obtain a standard isotropic dielectric with dielectric constant €. For €5, # O
the properties of the medium in the given direction depend on the angle ©
(cos 8 = v) , which forms this direction with physically outlined axis OZ.



The medium is then found to be birefringent and gyrotropic. In case of ten-
sor (4.6), the index of refraction is determineéd by formula (V) and the ratio
az/ a; by formula (VI). The directions of vectors 3; and 3, is taken along
the major axes of the ellipse described by the end of vector E (see Appendix).

In order to find the values of &, according to (3.11) - (3.14), we shall
make use of relations (VI) - (VII). As a result, we shall obtain

\ [("’Y’ —e)(nt—e) — ]2+ ntyr (1 —y?)(n? —ep
a'—cka—¢NM~ﬂ**ﬂn+k“ﬂ“”t*%gm’wﬂmf“'wq @

The value of a, is determined by formulas (4.7) and (VI), taking into
account the proportionality of the quantities a,, a, and E,;, E,.

We shall consider two physically defined cases of electron motion in
the considered crystal: the motion along the axiz 0Z and the motion perpendi-
cularly to this axis (¥%).

a) The Electron Moves along the Axis 0Z. According to the properties
of vector & (see Appendix), in the given case, we have

(va;) =0, 9=0. (4.8)

From considerations of symmetry it follows that both mentioned cone fa-
milies will be in the given case circular with axis directed along 0Z and
with uniform distribution of radiation intensity along the cones' cross-sec-
tion.

Condition (4.4) fog Cerenkov radiation yields, upon substigution %n it
of the expression for n,,, [see (V)], an equation relative to Y~ = cos'9,
whose solution will be

2, B Fe Vier gor (4.9)
2 2B [B’c (e’—:;)—c:,]
The conditions
2
0<'{1.z<1 (4.10)

determine the regions of parameters €,, €gs B, in which radiation takes place

. S ... {)8
@) o> g <L ) — o0, - << LY,

’ 1 —1 ” rrr - '—'l.
b)e>7,~,.eg>'—”—,;.——;b)o <B..eg - b)<0.ee-§i.—~;<4.m

1— .« QM7
¢) 6> < I )0 oS 6 S i € e <0 >



In regions a) both types of waves are.emitted, - in regions ,b) only type-1
(ordinary waves) and in regions c¢) only type-2 (extraordinary waves).

Let us now make use of formulas (4.7), (V), (VII), and also of conditions
(4.4), (4,8) and the symmetry condition. Upon simplifications we obtain from
the basic formula (4.5) the following expression for energy losses by the elec~
trom to emission

ety 'Y B (1 + eB?) )
(9[1,)1,3:—2&; X(l—?ﬂi)lli i—epz)Vln;+e gt o do (4.12)

where integration spreads over the region (4.11).

b) The Electron Moves Perpendicularly to Axis 0Z. 1In this case the radia-
tion pattern no longer has a circular symmetry relative to axis OZ as in the
preceding case. The conical surfaces of both families now have a complex sha-
pe, whereupon the radiation intensity on the different generatrices is not
identical (it is dependent upon the azimuthal angle ¢). Let us denote by v,
and Y, the angles forming vectors 3; and 4, with electron velocity direction

¥ (let the latter be directed along 0Y)

As follows from the properties of the considered gyrotropic crystal in-
dicated in the Appendix, following are the relations between the basic angles
characterizing the emitted waves:

¥
5’='1"'§|?FT5' (4.13)

8 sin? (Ep 07)

sin? (Ep

costp, = cos' g + 81’ sinig’ (4.14)

(1 —8%)cos?o
cos’¢,==za§;;;jggﬁgg. (4.15)
where i .
3= cos . (4.16)

The expression for sin (E’:.BZ) 1s determined from (VII). If in (V) we
introduce for n? the expression fory' from (4.13) requiring the fulfillment
of the radiation condition (4.4), we obtain with respect to 82 a quadratic
equation with coefficients dependent on €, €g» B, ¢. The solution of this
equation is as follows:

3. — £ {22 — ty cos? @] T % V ;:ﬁl cost @ + 4e (ef? — 1) sint .
" 28 [ (e* —€}) B* -+ ¢f sin 1] (4.17)

The inequalities

<Ll (4.18)

determine the regions of parameters €, €g> B, in which tadiation takes place

ood e



.a) ‘>'§i5" <V—-———-———=(€B’—”;

8 S 8
’ - e (P 1) " —— s
b’) 2> &, ag)-‘-ri(—‘%_ﬁ; b")s <0, egg__._‘iﬂi%’__}l; 4.1)
C') 8}—3—1.—, 8q<"" ..V_-_e..it:_%i—_i_).; C)B 0 Bg> V-t-(ﬁgi__i)-

Both types of waves are emitted in regions a), only type-l (ordinary
waves) and type-2 (extraordinary waves) are emitted respectively in reglons
b) and ¢).

In order to obtain a formula of losses to emission, it is necessary to
substitute into (4.5) the expression for a and a, [see (4.7) and (VI)], the
expression for y, and wz [see (4.14) and (4.15)]) and utilize the expression
(V) and conditions (4.4) and (4.11). As a result of the indicated actions,
and upon simplification, we obtain for (Fi)i.a the expression:

ot c B cost o ]
— + odo,
(Fiha /mc'S S ( = )[ Ve(ce* —)sind g + Bed cos'e (4.20)

o Qa0

where integration over w is spread to regions, whose boundaries are defined
by (4.19).

Obviously, integration in formulas (4.13) and (4.20) may carried out to
the end at least, in principle, under the condition that the components of
the dielectric tensor (4.6) € and Eg are given as a function of frequency.

As may be seen from (4.20), in regions, where both types of waves are e
emitted, the expression for aggregate losses to radiation coincides in form
with expressions (4.5'), giving losses in an isotropic medium with dielectric
constant €. Generally speaking, there will be no quantitative coincidence,
since the integration regions over w will be different.

In the limiting case € 0, that is, at transition to isotropic medium,
it follows from (4.13) and %4 20) that the losses, constituting in the sum
(4.5"), are divided equally between ordinary and extraordinary waves. Mean-—
while, it is obvious that no birefringence can take place in an isotropic
medium and that there is only a unique value n®> _ = €. There is however
no contradiction. For €, # 0, the "normal" wavés are ellitpically polarized
ones, and the same polarization character remains as when €, - 0O,mthat is,
in an isotropic medium. But the superimposition of these types of waves
yields in that medium a single linearly~polarized wave, which is easy to
verify.

Note that in both cases considered integrals (4.13) and (4.20) express
sing losses to aerenkov radiation, mau diverge at one of the integration
limits. This case, impossible for an isotropic medium, was already noted
in the work of author [2], devoted to electron losses in a nonactive aniso-
tropic medium. In the limiting case of transition to isotropic medium, the
region, where there is divergence, just as in the preceding case, degenera-
tes at the point € = 0. n an isotropic medium this point
to Cerenkov, but to polarization losses.



10

The question of calculation of polarization losses in an isotropic
medium with the help of the Hamiltonian method, and also the calculation of
totdl, as well as of losses to tadiation in a gyrotropic¢ medium by other
methods will be considered by the present author in a subsequent work.

5. OSCILLATOR EMISSION

Let us now find by means of the basic formula (3.15) the radiation energy
of an oscillator in a gyrotropic medium. The radius-vector of the radiating
electron re varies according to the law:

Te = roeh"”. (5.1)
If we assume, as usual, that oscillator dimensions (~r,) are small by

comparison with the wavelength, we shall be in a position to consider that
c“"uﬁ,vl_ Taking this into account, and also (5.1), Ew.(3.10) takes the form:

"].lu. + ‘"fuqlu = ‘l/;ﬁ: e ((vorw) + ¢ (roalul)l "’oem"' (5.2)

The solution of such an equation for initial conditions q5 = &i = 0
at t = 0 is as follows:

Vin ¢ wof(rotiyg) + 1 (o)) [e—w — g (14 ) et —
o}, — o} 2 Dy,

q,u =

1 TR

”“2‘(,‘—6,7)‘*"“]' (5.3)
Let us substitute (5.3) into (3.15) and take into account, as is usually

done in the Hamiltonian method [1, 3], the number of oscillations with frequen-

cy in the range w, w + dw. As a result, we obtain the following expression

for the energy of waves with the i-th type of polarization (that is, of ordi-

nary and extraordinary waves), whose normals lie in the solid angle dQ2

ol

it )
T [(roam ) + (Foana)?] 4Q2. 50

Here a1, 42 are determined according to (3.11)-(3.14) and (III); as
to the determination of njy » see the Appendix. This expression differs
from the case of inactive anisotropic medium [1l] by the presence of two and
not one term (?03)2, which is linked with the elliptical polarization of emit~-
ted waves, and by another form of & and n.

.%lu =

xxx T HE END =

Appendix and References follow..
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APPENDTIX

Let us bring forth certain indispensable data on the propagation of
plane waves in a gyrotropic nonabsorbing medium. The relationship between
vector D and E is given in the case in question by complex Hermitian tensor

(EoB).

D¢= 8y E .
a% e (D

On the other hand, in case of plane waves one may obtain from Maxwellian
equations the well known expression

3
l)¢ = —n? Z (xaxa — 8¢B) Eg (a == 1) 2: 3); (I1)

f=1

. . . > . .
where n is the index of refraction, K is the unitary vector of wave normal,

6&8 is the Kronecker symbol.

According to (I) and (II), we obtain a homogenous system of equations
with respect to Ey, Ey, Ey:

3 .
N3 (axp — 8op) +eap] Ep=0 (=1, 2, 3). (I11)

Bl

Equating to zero this system's determinant, and taking advantage of
the Hermitian state of tensor Eqg> We obtain relative to n® a biquadratic
equation, which is not appropriate to be written here. From this equation
two different expressions are obtained for n?, of which one corresponds to
the ordinary wave (nf), and the other - to the extraordinary wave (nz).

The system (III) and the expression for n? provide the pqgsibility of
finding with a precision to the constant multiplier of vector E component,
having the form

E~E, +iE;x (1Vv) |

where El and §2 define the plane of the ellipse which describes the end of
the electrig vector. From (I1I) one may obtain an unlimited number of pairs
of vectors E, and ﬁz. In the general case these vectors are not mutually
perpendiculaf, nor are they perpendicular to Z.

In the particular case of a simp;est gyrotropic crystal, described by
tensor (4.6), the expressions for n, E, etc. are substantially simplified
In this case the solution of the equation for n® yields

nla= 5 (29 — <} (i — 7)) e Ver (I — 1) + derp3), o

where vy = cosp, 8 being the angle between the wave normal and the axis 0Z of

the crystal.
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Now it is practical to take for vectors El and Ez the main axes of the
ellipse that describes the end of vector E; Vector ﬁl lies in a plane formed
by the axis of the crystal and the wave normal g, whlle E, is perpendicular
to this plane. The ratio of the quantities E1 and E2 is

E:- n‘y’(i—-yg)ez

BT ap (=) (B —ef + [y — ) (' — o) — 2| D)

The angle between vector fl and the axis 0Z of the crystal is determined
by the relation

ny VI=+%(n* —¢)
(n? — &) (n¥y? — ) — €}

N
tg (Ey, OZ) = (VII)

In conclusion, hhe author takes the opportunity to extend his sincere
thanks to Prof. V. I. Veksler and Prof. V. L. Ginzburg for their interest in
the work and the discussion of results obtained.

*%% END OF APPENDIX #%%
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